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Recently Baylis–Hillman adducts have been used for the synthe-
sis of many heterocyclic compounds and acyclic compounds.1–3

Among them functionalized 1,4-pentadiene is one of the meaningful
target structures due to the synthetic usefulness of this compound in
organic synthesis.2–4 Basavaiah and co-workers reported an elegant
method for these compounds involving the combination of two po-
lar intermediates.2 As shown in Scheme 1, nucleophilic part is a zwit-
terion which is generated in situ from DABCO and acrylonitrile, and
the electrophilic component is a DABCO salt of Baylis–Hillman bro-
mide. The nucleophile attacked the electrophile in a SN20 manner to
produce 2,3,4-trisubstituted 1,4-pentadiene.2

During our recent studies on Pd-catalyzed decarboxylative pro-
tonation and allylations,5 we reasoned out that 2,4,5-trisubstituted
1,4-pentadiene 5a could be synthesized by using Pd-catalyzed
decarboxylation–elimination strategy from modified Baylis–Hill-
man adduct such as 4a, as shown in Scheme 2. Palladium-catalyzed
decarboxylation–elimination was originally studied by Tsuji and
has been used extensively in organic synthesis.6 In order to check
the feasibility of our rationale we prepared starting material 4a
by the reaction of Baylis–Hillman bromide 1a and allyl acetoace-
ll rights reserved.

: +82 62 530 3389.
tate (2a) to prepare 3a and subsequent methylation with iodo-
methane to 4a.7

With this compound 4a we examined the reaction conditions as
shown in Table 1 under the influence of Pd(OAc)2 and PPh3.5,6 As
shown in Table 1, the ratio of Pd(OAc)2/PPh3 was very impor-
tant.5d,6 High loading of PPh3 [PPh3/Pd(OAc)2 = 2.0] increased the
amounts of decarboxylative allylation product (7a, 63%) as in entry
1,7 while low loading of PPh3 [PPh3/Pd(OAc)2 = 1.0–0.5] produced
decarboxylation–elimination product 5a (78–83%) as the major
product as in entries 2 and 3.5d,6,7 The use of 5 mol % Pd(OAc)2

showed a similar but slightly lower yield of 5a (entry 4). As
reported by Tsuji,6 the use of non-polar solvent such as toluene
lowered the yield of 5a (65%), instead the yield of allylation prod-
uct 7a was increased to 20% (entry 5). The use of DMF did not show
better results (entry 6). The use of Pd(PPh3)4 produced 7a as the
major product (60%) presumably due to high ratio of PPh3/
Pd(OAc)2, and compound 5a was not formed at all (entry 7). In
all entries, decarboxylative protonation product 6a was produced
in variable amounts as a side product (4–25%).

The plausible mechanism is depicted in Scheme 3 with 4a as an
example involving the sequential oxidative addition of O-allyl
bond to Pd(0) to produce p-allylpalladium intermediate (I), decar-
boxylation to form a C-bound p-allylpalladium intermediate (II),
and b-elimination to liberate 5a and Pd(0). There can be present
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Optimized conditions for the synthesis of 5a from 4a
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Entry Conditions Products (%)

1 Pd(OAc)2 (10 mol %), PPh3 (20 mol %), CH3CN, reflux, 1 h 5a (0), 6a (23), 7a (63)
2a Pd(OAc)2 (10 mol %), PPh3 (10 mol %), CH3CN, reflux, 1 h 5a (83), 6a (8), 7a (0)
3 Pd(OAc)2 (10 mol %), PPh3 (5 mol %), CH3CN, reflux, 1 h 5a (78), 6a (5), 7a (0)
4a Pd(OAc)2 (5 mol %), PPh3 (5 mol %), CH3CN, reflux, 1 h 5a (79), 6a (4), 7a (0)
5 Pd(OAc)2 (10 mol %), PPh3 (10 mol %), toluene, 80–90 �C, 1 h 5a (65), 6a (5), 7a (20)
6 Pd(OAc)2 (10 mol %), PPh3 (10 mol %), DMF, 80–90 �C, 1 h 5a (79), 6a (5), 7a (0)
7 Pd(PPh3)4 (10 mol %), CH3CN, reflux, 1 h 5a (0), 6a (25), 7a (60

a Selected conditions for the entries in Table 2.
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a competition between b-H elimination to alkene 5a and reductive
elimination of Pd(0) to allylated compound 7a in the intermediate
(II) stage. The competition could be controlled by changing the
ratio of Pd(OAc)2/PPh3 as shown in Table 1 (entries 1–3). Low load-
ing of PPh3 increased the amounts of b-H elimination product 5a.
The regioselectivity between Ha and Hb during the b-H elimination
of intermediate (II) was controlled completely and we obtained 5a
which was formed via the b-Ha elimination. We did not observe the
formation of other alkene product 8a at all in the reaction
mixture.6a,b,8 The selective b-Ha elimination may be attributed to
the small steric hindrance during the elimination process of Ha.
Encouraged by the successful results, we prepared starting
materials 3b–h by the reaction of Baylis–Hillman bromides 1a–d
and allyl esters 2a–c (K2CO3, CH3CN, rt) as summarized in Table
2.5a When the Baylis–Hillman bromide and allyl ester have nitrile
functionality (entries 2, 7, and 8), the yield of compound 3 (3b,
3g, and 3h) was low because of the formation of dialkylation side
product. Subsequent methylation of 3b–h was carried out with
iodomethane (Cs2CO3, CH3CN, rt–60 �C) to make 4b–h (74–92%).
The next decarboxylation–elimination reactions of 4b–h were car-
ried out under the optimized conditions (entries 2 and 4 in Table
1), and the results are summarized in Table 2.



Table 2
Synthesis of 2,4,5-trisubstituted 1,4-pentadienes 5
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Entry 1 + 2 (EWG1/EWG2) 3 (%)a Conditionsb 4 (%) Conditionsc 5 (%), 6 (%)

1 1a + 2a (COOMe/COMe) 3a (79) rt, 6 h 4a (86) A, 1 h 5a (83), 6a (8)
2 1a + 2b (COOMe/CN) 3b (68)d rt, 12 h 4b (88) B, 1 h 5b (68), 6b (13)
3 1a + 2c (COOMe/COOEt) 3c (97 60 �C, 12 h 4c (91) DMF, 2 he 5c + 6c (55, 3:2)f

4 1b + 2a (COOEt/COMe) 3d (81) rt, 6 h 4d (91) A, 1 h 5d (72), 6d (–)
5 1c + 2a (COMe/COMe) 3e (75) rt, 48 h 4e (74) A, 1 h 5e (72), 6e (10)
6 1c + 2b (COMe/CN) 3f (65) rt, 12 h 4f (92) A, 1 h 5f (54), 6f (17)
7 1d + 2a (CN/COMe) 3g (55)g,i rt, 12 h 4g (85)i A, 1 h 5g (73),i 6g (–)
8 1d + 2b (CN/CN) 3h (26)h,i rt, 12 h 4h (75)i B, 1 h 5h (62),i 6h (15)i

a Conditions: 1 (1.5 mmol), 2 (1.2 equiv), K2CO3 (2.0 equiv), CH3CN, rt, 12 h.
b Conditions: MeI (5.0 equiv), Cs2CO3 (2.0 equiv), CH3CN.
c Conditions A (entry 2 in Table 1), conditions B (entry 4 in Table 1).
d Bis adduct (1a:2b = 2:1) was isolated in 18% even with 2.5 equiv of 2b.
e Run at 140–150 �C.
f Mixed together and the ratio of 5c/6c was calculated from 1H NMR.
g Bis adduct (1d:2a = 2:1) was isolated in 16% even with 10 equiv of 2a.
h Bis adduct (1d:2b = 2:1) was isolated in 69% even with 10 equiv of 2b.
i The geometry of benzylidene part is Z when EWG1 is nitrile.
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As in Table 2, all entries produced the corresponding 1,4-pent-
adienes 5b–h in moderate to good yields (33–73%) and decarb-
oxylative protonation products were generated together in low
yields (10–22%) as side products. The yields of products were
good when EWG2 is acetyl (5d, 5e, and 5g) while low to moderate
when EWG2 is ester or nitrile (5b, 5c, 5f, and 5h). It is interesting
to note that ester derivative 4c did not produce 5c in CH3CN or in
toluene even at refluxing temperature for a long time. When we
used DMF as a solvent at high temperature (140–150 �C) we
could obtain 5c fortunately, although in low yield as a mixture
with 6c (entry 3 in Table 2).
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As another entry, we examined the reaction of 4i having p-nitro-
phenyl group.5b,9 Synthesis of 4i was performed by the reaction of
1a and allyl arylacetate 2d according to our recent Letter.5b The
reaction of 4i produced decarboxylation–elimination product 5i
in moderate yield (56%) as shown in Scheme 4. In order to synthe-
size more complex 1,4-diene, we prepared compound 4j by benzy-
lation of 3a. Under the same conditions (entry 4 in Table 1) three
types of compounds (3:3:1) were isolated as a mixture in 80%,
which states that stereo- and regiochemistry could not be
controlled in this case (Scheme 5).6a,b,8 The reaction of cyclohexa-
none derivative 4k, prepared from 1a and allyl 2-oxocyclohexane-
OOMe

COOallyl
Ph

COOMe

O

) 5k (78%)

Pd(OAc)2 (10 mol%)
PPh3 (10 mol%)

CH3CN, reflux, 1 h

6.

c)2 (5 mol%)
5 mol%)

N, reflux, 1 h

Ph
COOMe

COMe

Ph

Ph
COOMe

COMe

Ph

80% (three isomers, 3:3:1)

+

5.



K. H. Kim et al. / Tetrahedron Letters 50 (2009) 5322–5325 5325
carboxylate (2e), showed decarboxylation–elimination product 5k
in good yield (78%) regioselectively, as shown in Scheme 6.

In summary, we disclosed an efficient method for the synthesis
of various 2,4,5-trisubstituted 1,4-pentadienes by using the Pd-cat-
alyzed decarboxylation–elimination protocol as the key step under
the conditions of low loading of PPh3.
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